No. of printed pages-1

ATOMIC ENERGY CENTRAL SCHOOL-KUDANKULAM

Worksheet – Module-3/5

Subject-Chemistry

Class-XI

Lesson No.-Unit-6 (Thermodynamics)

Name of the topic-Enthalpy,Enthalpy of Transition,Enthalpies of Reaction

1. For the reaction $H_{2(g)} + \frac{1}{2} O_{2(g)} \rightarrow H_2O_{(1)} \quad \Delta Ho = -68K cal at 298K.$

What is the standard enthalpy of $H_2O_{(1)}$.

- 2. For the reaction $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) \Delta Ho = -92.2KJ$ at 298K. What is the value of ΔU if the reaction is carried out at constant pressure of 40 atm and volume change is -1.12 L.
- 3. ΔHof of PCl₅ and PCl₃ are respectively x₁ and x₂. What is ΔHo of the reaction. PCl₃(g) + Cl₂(g) \rightarrow PCl₅(g)
- 4. If ΔHof of $C_2H_4(g) = 12.4$ Kcal mol⁻¹, $CO_2(g) = -94$ Kcal mol⁻¹, $H_2O(l) = -68$ Kcal mol⁻¹. Calculate heat of combustion of $C_2H_4(g)$.
- 5. The enthalpy of formation of $H_2O(1)$ is -285.77 KJ mol⁻¹ and enthalpy of neutralisation of a strong acid and strong base is -56.07KJ mol⁻¹. What is the enthalpy of formation of OH⁻¹ ion.
- 6. Heat of combustion of H_2 is -242KJ mol-1 and that of CH_4 is -802 KJ mol⁻¹. Which will produce more heat due to combustion of 1 gm of each.
- If bond energy of Cl—Cl bond, H—H bond and H—Cl bond are 243, 435 and 431 KJ mol⁻¹, what is Δ*Hof* of HCl.

-----X-----X